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Center for the Application of Mathematics
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1. Introduction

In two papers [1,2] published in 1971, Valanis claimed to der-

ive from thermodynamic considerations three-dimensional constitutive

equations on the basis of which the behavior of plastic, or visco-

plastic materials, subjected to small or large deformations could be

modeled. His theory was most fully developed in the case when the

material is rate-independent and the deformations are sufficiently

small so that the classical infinitesimal strain tensor can be used.

Accordingly, in the present paper the theory will be discussed in

this context.

In [1] and [2], Valanis claimed for this theory the merit, over

most other phenomenological theories which purport to describe the

elastic-plastic behavior of metals, that it avoids the introduction

of a yield surface. The stress is expressed as a functional, of

specific form,of the history of the strain - a single such expression

being valid both under conditions of loading and unloading. It also

expresses the stress explicitly as a functional of the total strain

and avoids the separation of strain into elastic and plastic parts.

Since the thermodynamic content of Valanis's argument is ques-

tionable, and is, in any case, replete with ad hoc assumptions, dis-

cussion of it is relegated to Appendix A. There the argument is

presented in a manner which retains its essential features, but is

stripped of irrelevancies. However, even when presented in this

manner, it is evident that certain assumptions are unacceptable
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and others are of a quite arbitrary character unsupported by physi-

cal justification. Accordingly, in the main body of the paper

we discuss the constitutive equation without relation to this back-

ground, purely from the point of view of its suitability as a model

for such materials as metals.

The essential feature of the constitutive equation of Valanis

is that it assumes the stress following some deformation history to

be a linear isotropic functional of the strain increment history,

the kernel in this functional being a scalar function of an

intrinsic time defined by an isotropic scalar functional of the

strain increment history. Valanis uses the term endochronic theory

to describe a theory of this type. Valanis assumes a quite ex-

plicit form for the functional defining the intrinsic time. He

justifies it by an alleged reasonableness, which is subjective, and

by alleged agreement between the predictions of the theory and

experiment. It is seen in 9§2 and 6 that even if we take this

agreement at its face value, it could not establish the validity of

his assumed expression for the intrinsic time, since a wide variety

of other expressions would provide equally good agreement.

In this paper we discuss the theory in a slightly broader

context, in which the particular form for the intrinsic time used

by Valanis is replaced by a somewhat more general one (see equation

5.4) below). It will be seen that most of the criticisms which

can be levelled against the theory of Valanis also apply to theories

based on this more general definition of intrinsic time.

For rate-independent materials, the strain-history can

necessarily be parametrized in terms of the path-length covered by

the strain history in 9-dimensional strain space. The intrinsic

time, whether defiied in the manner adopted by Valanis, or in the



more general manner of the present paper, can then be parametrized

in terms of this strain path length. As a matter of convenience we

adopt this course in the present paper, although this is not

essential to the arguments presented.

In the case of one-dimensional deformations, discussed in

§§2-4, this strain path length is taken as the intrinsic time. For

simple shearing deformations this involves no loss of generality

since the intrinsic time is necessarily some constant multiple of

the strain path length. This is also the case for simple extension,

provided that we make the assumption, which is made by Valanis,

that Poisson's ratio (defined as the ratio decremental transverse

strain/incremental longitudinal strain) is constant.

In §2 we establish certain relations which could, at any rate

in principle, be used to test the applicability of the class of

constitutive equations considered to a particular material for one-

dimensional deformations.

In §3 we discuss the relation between the incremental moduli

for loading and unloading from a state in the plastic regime. It

has been pointed out that the constitutive equation adopted

by Valanis yields, in disagreement with experimental results for

metals, a value for the unloading modulus which is very different

from the initial modulus for infinitesimal strains from the un-

deformed state. We find that this is not necessarily the case in

the context of the more general theory discussed in the present

paper. In §4, we discuss the dissipation in infinitesimal

* This assumption, which was criticized by Lee [3] is discussed
in §7.



unloading-loading and loading-unloading strain cycles starting at

an arbitrary strain which has been reached by a monotonic loading.

We find, as did Sandier [4] in a more restricted context, that the

dissipation must necessarily be negative in either one or the

other of these cycles and accordingly, the material will be unstable.

The three-dimensional theory is introduced in §5. It is

shown in §6 that for deformations consisting of successive simple

extension and simple shears, carried out in discrete time inter-

vals, any definition of intrinsic time in the broader class envisaged

in the present paper can lead to the same prediction for the stress

as that used by Valanis, if appropriate values are given to the

adjustable constants. Accordingly, agreement between theory and

experiment for deformations of this type cannot be used to estab-

lish the predictive value of Valanis's constitutive equation for

more general deformations. Attention is drawn in §8 to a further

general criticism of constitutive equations based on the endo-

chronic concept. It is shown that if a strain is reached by two

paths which differ only very slightly, the associated stresses may

be very different, i.e. the relation between stress and strain

history is not continuous in the sense of the supremum norm.

In [5] Valanis presented a revised theory in order to meet

the criticisms which had been levelled at the earlier theory.

This is discussed briefly in §9. He again motivates the theory

by thermodynamic arguments which are analogous to, and open to the

same criticisms as, those used to motivate the earlier theory.

Accordingly, we do not discuss them explicitly in the present

paper. While this second theory is, in fact, not open to most of

the criticisms to which the earlier theory is subject, it does not



possess the two major and somewhat revolutionary advantages which

were claimed for the latter - that it describes the elastic-plastic

behavior of metals without the introduction of a yield surface and

without the separation of the strain into elastic and plastic

parts. It differs from previous theories of plasticity only in the

manner in which strain-hardening affects the yield surface and the

relation between stress and incremental plastic strain. No evidence

is adduced to demonstrate that it provides a more accurate des-

cription of the actual behavior of metals than do other constitu-

tive equations that have been suggested.

f.... .t o? -tAS '

I q.
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2. One-dimensional theory

We consider small uniaxial deformations of a rate-independent

material. Let e denote the strain. Let Z be the length of the

strain-path, thus:

dZ = Idci , (2.1)

with Z = 0 in the undeformed state.

We now consider a deformation in which c 0 initially and in-

creases monotonically to el then decreases monotonically to

C2 . increases monotonically to e3 , and so on, the final rever-

sal taking place at E = E. We denote the final value of e at

which the stress is measured by E . We note that if P is odd (even)

the last reversal will be followed by a decrease (increase) in e.

Let Z be the value of Z corresponding to the ath rever-

sal of the strain, and let L be the value of Z corresponding to

the final value E It is easily seen from (2.1) that

&-1 a (2.2

L = 2 l ('I)8- s +(-l) E (2.3)
8=1

We now regard e as a function of t and make the assump-

tion that the stress a is given by

L 
= ff(L,Z)de(Z) , (2.4)

0

where f is a positive function of the indicated arguments.
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Noting that for Z-1 <  < Za

de(Z) = d£ (a odd) and de(Z) = -dZ (a even) , (2.5)

we obtain from (2.4)

a = 2 [ (-1) -  g(L,£Z) + (-1) g(L,L) , (2.6)
a=l

where t
g(L,Z) = f(L,t)d . (2.7)

0

We can rewrite (2.6) as

[ (-1) a o(L,Za) + a(L,L) (i even)
a =i

a =(2.8)

(1)a- (, a )  (u odd)

a=1

where

a(L,Z) = 2g(L, ) -g(L,L) ,(2.9)

a(L,L) - g(L,L)

We note that a(L,Z ) is the stress, when the length of the strain
a

path is L , in a deformation in which the strain increases mono-

tonically from zero to ta and then decreases monotonically until

the total length of the strain path is L . Also, a(L,L) is the

stress, at strain path length L , in a deformation in which the

strain increases monotonically from 0 to L

From (2.8) it is easily seen that
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o(L,/l,...,1 ) -a(L,/ 1 ,...,l _) = (-1) [a(L,L) -a(L, Z)], (2.10)

where a(L,t 1,...,Z ) denotes the stress, at strain path length

L , resulting from a deformation with p reversals of strain at

path lengths Z1 ,Z2,...,PtP

From (2.10) or (2.8), we easily obtain the relations

a(L,Zl,...,Za) -. (L,Z1,...,Za 2 ) = (-1) [a(L,Za_)-a(L,Z )]. (2.11)

Conversely, by giving a the values 3,5,...,p (odd) in (2.11)

and adding the resulting equations, we can recover (2.8)2 and, by

giving a the values 2,4,...,p (even) and adding the resulting

equations, we can recover (2.8)1 In deriving the second of these

results, we note that when a = 0 , (LZa )=a(L,L)

As an example of the implications of equations (2.10) and (2.11),

we consider a deformation in which the strain increases from zero

to E and then undergoes n cycles of deformation between strains

E 1and E 2 (E2<E1) . In this case

l = El + (a-i )(E 1 - 2) L = Ei + 2n(E i- 2 ) (2.12)

Taking a - 2n + 1 in (2.11), we obtain

a(L,ti,...,Z 2n+l)-a(L,ei,...,t2nl) = a(L, zn+l)-a(L,e 2n) . (2.13)

We note that the a's in (2.13) have the following interpretations:

a(L,t1,...,Z2n+l) is the stress at strain El resulting from an

initial deformation to strain e 1 followed by n cycles between

strains c and F2 (c2< C) ; c(L'Z1''..'/ 2n-l) is the stress at
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strain E1+ 2(E:1- 2) resulting from an initial deformation to

strain E followed by n-l cycles between strains ei and 2

and then a further increase in strain to e1+ 2(cI-C2) ;

a(L,YZ n+l) = a(L,L) is the stress at strain e + 2n(EI- 2) resul-

ting from a monotonic deformation to this strain;

a(L,Z 2n) is the stress at strain el+ 2(n-l)(e 1 -C2) resulting from

a monotonic deformation to strain e1+ (2n-l)(E 1 -e2) followed by a

decrease in the strain to e 1+ 2(n-l)(E 1 -E2) .

Suppose now that we do not assume that the stress is given by

an expression of the form (2.4). As before, we consider that ini-

tially the strain increases and this increase is followed by ,i rever-

sals of the strain at strains e 1 E2 ...,E. Then, at £ = L , the

stress must be a function of L and of ei,2,.. .: , and, hence

from (2.5), of L,tI,Z2,... , • We write

-= a(L, 1,...,) • (2.14)

We note that if = 1, the relation (2.10) is satisfied identi-

cally. (We bear in mind that if v 1, o(L,Z 1 ,...,Zp 1 )=(LL).)

It is easily seen that if the function a(L,1 - (L,t 1 ) , say,

is specified, and we take

1

f(L,Z) - 2. [ (L,Z)] (2.15)

in (2.4), we obtain

a(L,t 1) - 2 [26(L,ZI) . F(L,0) - F(L,L)] (2.16)

F(L,0) gives the specified dependence of stress on path length

for monotonic decrease of strain from zero to -E . Provided that
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a(L,O) = -a(L,L) , (2.17)

we obtain from (2.16)

a(L,ZI) = E(L,/1 ) (2.18)

The condition (2.17) is the condition that the prescribed stress

merely changes signs if the prescribed strain history is replaced

by its negative. That such a condition is necessary if the pre-

scribed stress is to be expressible in the form (2.4) is evident.

We thus conclude that if the stress at Z = L, following a single

reversal, changes sign when the strain history is replaced by its

negative, then this stress can be expressed in the form (2.4).

We shall now show that if, further, the specified stress at

Z= L following P reversals of strain is an odd function of the

strain history and satisfies the relations (2.10) for ' I ,. ,

then the specified stress can be expressed in the form (2.4) with

f(L,/) given by (2.15).

We prove this result by induction. Suppose that a(L,Z.,...,

Z) with a odd is given by (2.4), i.e. by (2.6) with p = a-1,

thus

= 2[g(L,Z ) - g(L,Z2 ) + ... -g(L,Z _)] + g(L,L). (2.19)
22.-

We assume that (2.10) with P = a is valid. Then, we obtain,

from (2.19), (2.9) , and (2.10) with p = a

(i,/l,. . .,& ) = 2[g(L,Z )-g(L,Z2 ) + . +. g(L,Z,)] -g(L,L). (2.20)
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It follows that a(L, i,..., ) is given by (2.4) with f(LZ)

given by (2.15). An analogous argument is applicable to the case

when a is even. Since we have already seen that the proposed

theorem is valid when a = 1 , it is valid for all a

It is suggested that an experimental test of the validity or

non-validity of the constitutive equation (2.4) might well be based

on the relations (2.10).
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3. The incremental modulus - uniaxial deformation

In this section, we again consider a uniaxial deformation in

which the stress is given in terms of the strain history, regarded

as a function of strain path length Z, by

rL
a(L) = f(L,Z)dE(t) , (3.1)

0

where L is the value of Z at which the stress is measured.

We consider a strain history which consists either of a mono-

tonically increasing strain, or of a sequence of increasing and de-

creasing strains. We assume, however, that the strain E corres-

ponding to path length L is positive and is reached finally

through increasing strain. We calculate the incremental moduli at

Z = L when the strain is increased by an infinitesimal amount AE.

Let Au be the corresponding increase in stress. If AL is the

increase in Z corresponding to the strain increase AE , we have

AL = JAEI . (3.2)

We denote by p+ and ii- the incremental moduli correspond-

ing to AE positive and negative respectively. Then, from (3.1),

_ a A y f(L,L) + L f(L,Z)deu+ 4E AL U
0AL(3.3)

= A _A f(L,L) - a f(L,Z)dZ
E ATL _

0

We note that when L = 0

= = f(0,0) = , say (3.4)
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10 is the incremental modulus at zero deformation. From (3.3)

+ 1 = 2f(L,L) . (3.5)

Valanis [1,'] made the particular choice of f(L,/):

f(L,) =E + El(lT\ , (3.6)

where EO, E1 , s and n are positive constants. In this case,

1O = f(L,L) = E0  + El  , (3.7)

and (3.5) becomes

P+ + P_ = 21. (3.8)

For metals it is found experimentally that u is approxi-

mately pO and since, in the plastic regime, 1+ is very much

less than Uo , the relation (3.8) is not valid. This was

adduced as an argument against the endochronic theory ad-

vanced by Valanis in [1,2] and led the latter to modify his theory.

It is evident that the same criticism would apply to any theory in

which f(L,Z) has the form

f(L,t) = C1  1 + C 2 +C V (3.9)
1 T_7 2 ~2 (L) + v-7E

where C,.,C are constants, so that f(L,L) = f(0,0) How-

ever, it may not apply for other forms of f(L,/). Also, this

criticism does not, of course, preclude the applicability of one-

dimensional constitutive equations of the type considered to other

materials than metals.
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4. Dissipation in cyclic deformation

(a) Unloading-loading

We now consider the material to undergo a monotonically

increasing uniaxial strain to strain e " Thereafter, the

strain is decreased to e2 and then increased to e We

shall calculate the dissipation D , per unit volume, in this

cycle of deformation.

Let t Z and L denote the strain path lengths at

the first and second strain reversals and at the final strain

E1 respectively. Then,

i = e 1 ZC21 L =  31 2c2  (4.1)

Let t be the value of the strain path length at a generic

point on the cycle at which the strain is e . Then,

dt = de (strain-increasing) and dZ = -de (strain-decreasing).

(4.2)

From (2.4) and (4.2) the stress at a generic point of the

cycle, corresponding to path length t , is given by

a(Zzi) = 2g(Z,Z 1 ) -g(ZZ) strain-decreasing

(4.3)

a(tz 1 , ) = 2g(Z,Z 1 ) -2g(,Z 2 ) + g(t,Z), strain-increasing

where g(t, ) is defined by (cf.(2.7))

=,) f f(/,E)dE . (4.4)

0

The dissipation D , per unit volume, in the cycle is given by
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D f - a(Z't)d + f , z,12) U (4.5)

zl12

We now make the assumption that the amplitude of the

deformation is sufficiently small so that terms of second deg-

ree in (Z-Zi) may be neglected in comparison with those of

first degree. Then, we may write, from (4.4),

g(Z,Z1 ) = g(Z1,Z1 ) + (Z-Zt)gl ,

g(tt 2 ) = g(Zle i ) + (e-tl)gJ + (Z2 -Z 1 )g 2 , (4.6)

g(Z,Z) = g(zl,Zl) + (Z-Z1 )gl (Z-Zl)g2 I

where g, and g2 are defined as the values of

3g(Z,) and g ) respectively when Z = Z and Z I'

Introducing (4.6) into (4.3), we obtain

aC(.,Z1 ) = g(C 1,e) + (4-e 1 )le - (-e9~ 2 ,1 1 I - -Zi~2 ,(4.7)

C(Z,Z,11 Z 2 ) = g(Zll) + (Z-Zl)gl + (Z+Z1 -ZIC2 )g2

We now introduce (4.7) into (4.5) and carry out the integra-

tions to obtain, with (4.1),

P gl(Cl-C2 )2 (4.8)

For the particular expression for f(Z,E) used by

Valanis (cf.(3.6)), viz.,

f(ZC) 0 + E n (4.9)
0
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where E0 , El, a and n are positive constants, we have

from (4.4) and the definition of g

El (n'l) 1 I91 n [ (4.10)

(b) Loading-unloading

We now consider the material to undergo a monotonically

increasing uniaxial strain to e . It then undergoes a cycle

of strain in which the strain is increased to e2 > El and

then decreased to e 1 again. The strain path lengths

fl' t2 and L are now given by

£i = E' Z2 
= E: 2 ' L = 2E 2- 1 . (4.11)

If, as before, f is the value of the strain path

length at a generic point on the cycle at which the strain is

e ,we have, as before, the relations (4.2). The stress is

given by

o(z,) = g(tZ) strain-increasing
(4.12)

G(Z,Z2) = 2g(Z,t2) -g(ZZ) strain-decreasing

The dissipation D in the cycle is now given by

D = a(Z,)dl f o(ZZ 2 )dZ (4.13)

lI  12

Again, with the small amplitude assumption, we obtain

Ii
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g(Z,Z) =' g(ZI, ZI) + (Z-Z)g + (-Zl)g,

(4.14)=~) + Z-z
g(Z'Z 2 ) g(l',L) + (-Zl)g 1 g2

From (4.12), (4.13) and (4.14) we obtain, with (4.11),

2D -g1 ( 2-C1 ) . (4.15)

If f(t, ) is given by (4.9), we find, as before, that g,

is given by (4.10).

(c) Discussion

We note from (4.4) that

91= d g = J .f4L) d. (4.16)
11ti 0

Then, g, = 0 if Z, - 0 and, from (4.8) and (4.15), we have

D = 0 , whether the infinitesimal cycle of deformation is the

loading-unloading or the unloading-loading cycle. If f is a

monotonically decreasing function of Z , then g, is nega-

tive and, for Z1 # 0 , D < 0 for the unloading-loading

cycle and D > 0 for the loading-unloading cycle. This is

the situation which prevails in the case when f

takes the particular form (4.9) proposed by Valanis. These

results imply that the materials considered have no finite

elastic range as was pointed out by Lee [3]. Also, the fact

that D < 0 for the unloading-loading cycle implies, was

pointed out by Sandler [4], that the material modeled is

unstable.
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5. Three-dimensional theory

We consider the material to undergo sufficiently small defor-

mations so that the deformation in an element can be described by

the history of the infinitesimal strain matrix e(t) = lieij(t)I

referred to a rectangular cartesian coordinate system x . Let

ay = Haij 11 denote the stress matrix at time T , referred to the

system x

The length of the strain path at time t in 9-dimensional

strain space is given by

dZ(t) = {tr[dc(t)] 2} , Z(O) = 0 , (5.1)

i.e.

Z(t) = {tr[d(t)] 2} . (5.2)

0

We introduce the notation

L = t(T) . (5.3)

It has been shown by Pipkin and Rivlin [61 that, for an

isotropic rate-independent material, the stress corresponding to

strain path length L is an isotropic tensor functional of the

strain history regarded as a function of Z • We shall examine

the properties of a particular class of such relations which in-

cludes that used by Valanis [1,2] as a special case.

* The strain path lengths t and L introduced in this section
do not reduce in the uniaxial case to those introduced in §2.
They can, however, be simply related to them.
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We define an isotropic scalar functional € of e(Z) by

d= - d (Z) = ([de(Z)] , (O) = 0 , (5.4)

where p is a positive definite isotropic scalar function of

de(t) ,homogeneous of degree unity in the latter. From (5.4)

C M(Z) = j [de(Z')] (5.5)

0

We call C the intrinsic time. We note that since € is posi-

tive definite, C increases monotonically with e. Since ( is an iso-

tropic function of dE(Z) , it must be expressible as a function

of the elements of an isotropic integrity basis for dE(Z) . This

may be chosen as Il, I2, 13 defined by

I1 = trrd (Z)] , 12 = tr[de(Z)]2 , 13 = det[d(t)] . (5.6)

We adopt the notation

Z = (n) . (5.7)

We now assume that the stress a corresponding to strain path

length L is given by an expression of the form

= 2 J P(Z, )dE(Z) + 6 J X(Z,;) tr[dc(Z)] , (5.8)

0 0

where 5 denotes the unit matrix.

Valanis adopts the particular form for (p

2[deiZ)] (k1 2 + k2 12) (59)¢[dz~f1 =(l 1 2 ,
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where k1  and k2 are positive constants, which may vary from

material to material. He gives no reason for making this particu-

lar choice beyond the statement "it appears logical to define

by..."
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6. Simultaneous simple extension and simple shear

We now suppose that the material is subjected to a simple

extension in the x l-direction of a rectangular cartesian coordin-

ate system x and a simple shear for which the direction of shear

is the x2-direction and the plane of shear is the x 1x2 -plane.

We adopt the notation

= E() = l 1 1 (Z) , K = (Z)= E12( ) (6.1)

and

E = e(L) , K = K(L) , (6.2)

where Z = L at the instant at which the stress is measured.

In order to be specific we shall suppose that the initial

extension is positive and that successive reversals of the exten-

sion occur at e = el,£2,.. .,e We also assume that the initial

shear is positive and successive reversals occur at K = Kl, K2 ,...,K.

It is assumed that the shearing and extensional deformations may

occur in any order, but take place in disjoint time intervals.

Let

S= Z when e L (ca=l,...

(6.3)
Z = Z when K - K (a=l'' ''v)"

For a simple extension in the x -direction only all is non-

zero and, from (5.8), for the simple shearing deformation in the

12-plane, only a12C 021) is non-zero.

We assume, with Valanis, that Poisson's ratio for the material

is a constant w , say, independent of the deformation to which

the material is subjected. (We shall discuss this restriction later
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in §7). Then,

tr E = (1-2 )E . (6.4)

We have, from (5.2), (6.3) and the assumption that Poisson's ratio

is constant

Z "(l+2 2) (l 2(l) a- + (-1) Ct

la =1

+ 2 ;1 2(-l) l + (-1) tKj, (6.5)

where a is the number of reversals of extensional strain and y

is the number of reversals of shear strain prior to the strain-path

length t being attained.

Since is homogeneous of degree unity in de(Z) and is

positive definite, for the particular class of deformations con-

sidered in this section

klld F-()l for simple extension
* -- (6.6)

k2ldK(t)l for simple shear

h e2 and k are positive constants, which depend on the

particular choice of ¢ We note from (6.5) that

IdE(Z)I (1+2 2 ) -  d

IdK(Z)J = 2 - dz 
(6.7)

From (6.4) and (5.6), we have

I1 M (1-2 )dE, 12 = (l+2 2)(de) 2, 13 = 2 (dc) 3 for simple extension

(6.8)
I1 = 13 = 0 12 2(dK) 2 for simple shear.
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In the particular case (5.9) considered by Valanis, we

obtain, with (6.7) and (6.8),

={k 1 (l-2) 2+ k 2 (+2ai 2 )1;2 (1+2 2 dt for simple extension

k~l kdt for simple shear. (.9

Introducing (6.7) into (6.6) and comparing the resulting expres-

sions with (6.9), we obtain

ki= 2 2{k 1 (1-2w) + k,,(1+2w )

;__2 (6.10)

k2=(2k 2)

As another illustration, suppose

=[aI I + bI1 2  + ci I + el 21] (6.11)

where a,b,c,e are positive constants and I,. 1I2) 1 3 are de-

fined by (5.6). Then, from (6.11), (6.7) and (6.8)

=[a(1-2 3) 4+ b(1-2 j) 2(1+21 2 +4 c~j (1-2Zj)

+4 e(I2E (1+2 2) g dt for simple extension

(6.12)

e ek dt for simple shear.

Comparing (6.12) with the expressions for obtained from (6.6)

and (6.7), we have

k= [a(l-Nc) + b(1-2 5) (1+2 ) + c O (1-2a3) + e(1+2 )
(6.13)

k= (4e)
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We have seen that any , which is a function of Ii. 12, 13

and is homogeneous of degree 1 in de/dZ , leads to the expres-

sion (6.6) for simple extensions and simple shears of the types

considered. It follows that we cannot distinguish between differ-

ent forms of p by experiments in which the deformation is a

sequence of such simple extensions and simple shears. In particu-

lar, the experiments of Mair and Pugh, which involve the super-

position of simple extensions on simple torsions of thin tubes,

cannot be used, as Valanis has done, to establish the validity of

the particular form (5.9) for . Agreement of his theory with

such experiments could, at best, lead only to the conclusion that

the theory is not inconsistent with the experiments.
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7.. Poisson's ratio

It is assumed by Valanis in [1,2] that Poisson's ratio for

the materials he considers is constant. An assumption as radical

as this should be tested independently for any material to which

the theory is applied. This could be done, at any rate in prin-

ciple, by measuring the change in volume, or the lateral contrac-

tion, of a rod of the material when subjected to simple extension.

Alternatively, it might be done by making simultaneous

measurements of tensile and shearing force when a thin cylinder of

the material is simultaneously subjected to simple extensional and

shear strains which are increased proportionately. For simultane-

ous monotonically increasing simple extensions and simple shears, we

find from (5.8) that, whether or not Poisson's ratio 3 is constant

= [24(,) + (l-2,X(Z, )]dE(Z)

o
a2 2 = 3 3 = [-2,3i(Z,,) + (-2 )A(Z,)]ds(Z) = 0 , (7.1)

0

1 2 =  2-i(Z, )dK(Z) , a 2 3 = ar3 1 = 0

0

where E(Z) and K(Z) denote the extensional and shear strains

respectively. In (7.1), Z is given, from (5.1), by

dt = [(l+2, 2 )(de) 2  + 2(dK) 21 (7.2)

with Z = 0 when the material is undeformed. Also, from (5.6),

we have

2 2 2I. = (1-2 )dc(Z), I, = (l+2& )[d:(.)] + 2[dK(Zj](
3]2(7.3)
1 3 = ![dE(Z)]j(j[de (Z)]2 + [dK(Z)] 2
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d; is a positive function of I,, I, I,,, homogeneous of degree

unity in dc(Z) and d<( ), and ; = 0 when t = 0

It follows from (7.1) that, if , is constant,

f

= 2(1+1) f ,(Z,;)dE(Z) ,

0 (7.4)

jL
12 = 2 ',()d<(Z)

0

Now, if the extensional and shear strains are increased propor-

tionately, so that

K(t) = XE(t) , (7.5)

where X is a constant, we have, from (7.2) and (7.5),

d(Z) = (1+232+ 2X 2 ) dZ

-2 2 (7.6)
dK(Z) = X( I +2w2 + 2X 2 ) d(

Also, from (7.4) and (7.6), ie have

a = 2(1+)(1+2 + 2X2 ) - j(Z,c)d

0

0 12 212+2x )- x p(Z, )dt

Thus,

0" 11 / 12 -- (1+') /X (7.8)

The assumption that Poisson's ratio is constant has been criti-

cized by Lee [31 insofar as the applicability of the theory to
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metals is concerned. For most metals, Poisson's ratio in the

elastic range is about 1/4. This implies that the ratio

bulk modulus/Young's modulus z 2/3. It is well-known that when

the plastic strain in a metal is large compared with the elastic

strain, the bulk modulus is far greater than the Young's modulus

It is, however, possible that for other materials, particu-

larly those which may, with good approximation, be regarded as in-

compressible, the assumption of constant Poisson's ratio will be

valid.

* Here we are using the term "Young's modulus" in the sense of
(tensile force per unit area/extensional strain) notwithstanding
that the material is plastically deformed.
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8. A continuity consideration

We now consider a deformation which consists of alternate

infinitesimal simple extensional strains of amount Ae and in-

finitesimal simple shearing strains of amount AK As in §6, we

consider the extension to be parallel to the xi-axis of a rectan-

gular cartesian coordinate system x and the shear to be in the

x2-direction and the Xx2 -plane. We consider the tensile and

shearing stresses after v such simple extensions and simple

shears. We denote the resultant extensional strain by E(=vAe)

and the resultant shear strain by K(=vAK) . The value of C when

the extensional strain is s and the shearing strain is K is

given by (cf.(6.6))

I C +i 2 K(8.1)

Since

= K/E , (8.2)

equation (8.1) can be rewritten at

=(1 + k ~ ( + k 1 k9 (8.3)

We shall assume that has the form proposed by Valanis and

given by (5.5) and (5.9). Then, k and k are given by (6.10).

With the assumption that Poisson's ratio is constant, the

tensile and shear stresses are obtained from (7.4) as

a = 2(1+5) f (Z, )d,

0 (8.4)

912 = f p(Z,4)d<

0



where is given by (8.3) and

Z = k1E + k2K (8.5)

We now suppose that instead of increasing the strains to their

final values in a stepwise fashion, we increase them proportion-

ately. Then, using the expression for given by (5.5), (7.3)

and (5.9) we have, with (8.2) and (6.10),

F2i+ e = )k +=k2 (8.6)
1 EK2 --2 1 K2  2 1

Z is obtained by taking e = E or K = K in (8.6).

The tensile and shear stresses are then given by (8.4) with

these expressions for and Z It is evident that they are, in

general, different from those which correspond to the stepwise

deformation previously considered. Similar disparities will evi-

dently be found, except perhaps in some exceptional cases, if other

forms for c are adopted.

In mathematical terms, the type of behavior predicted by the

model we have considered arises from the fact that the intrinsic

time is not a continuous functional, in the sense of the supremum

norm, of the strain history.

We note that if a material does, in fact, exhibit the type of

behavior predicted in this section, it will be extremely difficult,

and perhaps impossible, to subject it to meaningful tests of the

type considered.
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9. Valanis's second theory - phenomenological approach

In presenting his first theory, Valanis claimed, as a major

advance, that the endochronic assumption enables us to construct

a continuum-mechanical theory, for rate-independent elastic-

plastic materials, in which the material properties are described

by a single constitutive equation without the need to introduce the

concept of a yield surface. These constitutive equations also have

the attractive feature that, in them, the stress is related to

total strain.

Both of these features are lost in the second theory, advanced

by Valanis in order to meet some of the criticisms of his first

theory. This second theory is motivated by "thermodynamic" argu-

ments of a type similar to, and open to the same criticisms as,

those advanced in developing the first theory.

In the present section we will discuss the theory in more con-

ventional phenomenological terms. In [5] Valanis presents his

ideas at various levels of generality, but here we will limit our

discussion to that form of the theory whose implications are dis-

cussed in [S] at greatest length.

The strain e is regarded as the sum of an elastic strain

E and a plastic strain ep , thus:

E E P E• (9.1)

The stress a is related to the elastic strain by a constitutive

relation of the form

a= 2P O!E + x (tr E)6 , (9.2)
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where j o and 1o are constants. It is assumed that dilatational

deformations are purely elastic, so that

trep = 0, tr e = tr E (9.3)

From (9.2) and (9.3)2 , we have

tr a = (24 0+ 3Xo)tr E (9.4)

From (9.2), the deviatoric stress s is given by

= ~ -1 (tr a) = 2U0IE (9.5)

where eE denotes the deviatoric elastic strain. From

(9.1), (9.3) and (9.5), the deviatoric plastic strain ep is given

by

eP = P = e - eE = e - s/2p 0  (9.6)

where e denotes the deviatoric total strain.

An intrinsic time is defined in terms of the plastic

strain by

d = {tr(dEp)2 (9.7)

with = 0 in the undeformed state. We note that C is the arc

length measured along the strain path in the 9-dimensional space

defined by the components of the plastic strain in a rectangular

cartesian coordinate system: [We note the analogy between c , so

defined, and t defined by (5.1).]

For a rate-independent material the plastic strain e may be

regarded as a function of It is assumed in [5] that the
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deviatoric stress, when = Z , is related to the plastic strain

by a constitutive equation of the form

s~0 d sZ)-p
S = S(Z) = Sy I)-z 4(Z) + r , (9.8)

where

r = 2p o  f(Z, )dep(r.) ,(9.9)

0

s(O)  is a positive constant, and 4(Z) is a positive monotoni-

cally increasing function of Z From (9.8) and (9.7) it follows

that

tr(s-r) 2 = [sy (0),1(Z)] 2  (9.10)

Equation (9.10) may be regarded as a hypersphere in the 9-

dimensional space formed by the components of s in a rectangular

cartesian coordinate system. The center of this hypersphere is at

r (regarded as a vector in the 9-dimensional space) and its

radius is sO)(Z)-. Since tr s = 0 ,s must be on the inter-radiu is on heiner

section of the hyperplane tr s = 0 with this hypersphere. This

intersection is itself a hypersphere in the 8-dimensional sub-

space of the 9-dimensional space for which tr s = 0 This hyper-

sphere is called the yield surface. Since tr c = 0 , it follows

that the point r lies in this subspace. It is, of course, the

center of the hypersphere in the 8-dimensional space and the radius
of this hypersphere is s O)1(Z)

We note from (9.7) that if dep = 0 , then d = 0 and,

conversely, if d; = 0 , then d = 0 . Thus, if at any instant
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the deformation is purely elastic, dep/d l.=z is indeterminate and

equation (9.8) becomes meaningless. However, from (9.2), the stress

increment da is then related to the strain increment dc(=d E) by

da = 2 0de + X 0 (tr de)6 (9.11)

and, from (9.5), the deviatoric stress increment ds is related to

the deviatoric strain increment de(=deE) by

ds = 2P 0de . (9.12)

If dep/d;Ik=z is not indeterminate, it follows from (9.8)

that the plastic strain path, at arc length Z , is in the direc-

tion of the outward normal to the yield surface corresponding to

arc length Z

We see that the theory which has been presented is of a type

generally similar to many other plasticity theories which have been

formulated. In effect, it is assumed that:

(i) The total strain may be regarded as the sum of an elastic

strain and a plastic strain; the plastic strain is isochoric.

(ii) It is assumed that the moduli associated with changes of

elastic strain are constants, independent of strain history.

(iii) There exists a spherical yield surface in deviatoric stress

space, whose outward normal is parallel to the incremental plastic

strain vector.

(iv) The radius of the yield surface and the position of its

center depend on the history of the plastic strain (i.e. the material

modeled exhibits both kinematic and isotropic hardening). A particular

form is chosen for this dependence, which, while having a measure
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of generality, is far from being of the most general form that can

be envisaged.

(v) If the deviatoric stress lies at a point on the yield surface

corresponding to some specified plastic strain history and is then

changed to a point lying inside, or on, this yield surface, the

corresponding deformation is purely elastic.

It is evident that the assumptions (i), (iii) and (iv) meet

the objections to the first theory of Valanis discussed in §4, 5

and 7. Paralleling the discussion in §6, we shall now discuss the

extent to which experiments involving superposed simple extensions

and shears carried out in discrete time intervals can be used to

establish the validity of the constitutive equation (9.8), with

(9.9).

We again consider a somewhat wider class of constitut ve

equations which have the form given in (9.8) and (9.9), but in

which r is defined in a different manner. Let Z denote the

length of the plastic strain path at time t , thus (cf. (9.7))

t
P(t) {tr[d P(t)] 2 , (9.13)

0

and let

Lp Z p(T) (9.14)

Then, Zp can be used to parametrize e.

We now define dC as an arbitrary positive isotropic scalar

function of dEp , which is homogeneous of degree unity in the

latter. Accordingly, d is a positive function of the isotropic
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invariants of dEp , denoted IV 12, 13 and defined by (cf.(5.6))

I, = tr[dEp(Zp)] = 0 , '2 = tr[d~p(pCp)] 2 13 = det[dEp(Cp)].

(9.15)

which is homogeneous of degree unity in dp . We take = 0

when e = 0 . We define Z by

Z = (Lp) . (9.16)

With this new definition of , we assume a constitutive

equation of the form (9.8), with (9.9). Then, it is easily shown,

in a manner analogous to that employed in §6 in discussing the

first theory, that measurements of stress, in experiments involving

simple extensions and shears carried out in disjoint time intervals,

cannot be used to establish the validity of any particular form of

dependence of ; on 12 and 13

Also, it can be shown, paralleling the discussion in §8, that,

in general, for a constitutive equation of the form given in (9.8)

and (9.9), paths in plastic strain space which are arbitrarily

close together, may have very different values for correspond-

ing to the same values of plastic strain and accordingly may yield

very different values for the stress at the same value of the

strain. However, this fact does not constitute an objection to

the theory, since plastic strain histories which are close together,

in the sense of the supremum norm, may be associated with very

different histories of the total strain.
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Appendix A. "Thermodynamic" justification of the first theory

In this section, we outline the essential features of the

argument of Valanis in arriving at the constitutive equations of

his first theory of plasticity, in the particular case when the

strains are small and the deformations are carried out isother-

mally. The argument given here is not strictly that given by Vala-

nis [1]. His theory involves rather elaborate thermodynamic con-

siderations of questionable validity, which are, in any case, un-

necessary for attaining his final constitutive equations. We have

found it possible to replace these arguments by far simpler ones

which involve only some of the assumptions used, either explicitly

or implicitly, by Valanis and none that are not used by him.

Valanis defines, for a rate-independent material, an intrinsic

time scale z which is a monotonically non-decreasing function of real

time t and is a functional of the strain-history up to time t

He considers that the form of this functional dependence may depend

on the material considered. For an isotropic material undergoing

small deformations, he expresses z as a monotonically increasing

function of another (positive) variable , thus

z = f( ) (A.1)

is, in turn, defined by an expression of the form

(d ) 2 = k (tr d£) 2 + k tr(d ) 2 , (A.2)

where k and k are positive material constants, with = 0

initially. We note that the expression for d is the most
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general quadratic form in de , with constant coefficients, which

is invariant under an arbitrary orthogonal transformation. Valanis

then assumes that the stress a measured at time t is an iso-

tropic tensor functional of the strain regarded as a function of z.

These assumptions ensure that if we consider the strain in the

material to execute a specified path in nine-dimensional strain

space, the stress corresponding to a particular point on this path

is independent of the rate at which the path is executed. The same

objective can be achieved by choosing z to be any isotropic scalar

functional of the strain history which increases monotonically with

time. For example, the strain path length Z , defined by (5.2),

provides such a functional. It is emphasized that the particular

choice which is made neither increases nor decreases the generality

of the theory developed. It merely changes the form of the

functional expression for a appropriate to a given material.

The particular definition (A.2) of c adopted by Valanis is

justified only by the statement [1] "it appears logical to define

by..." . The particular dependence of z on which he

assumes is avowedly justified only by alleged agreement of the pre-

dictions of the theory with experiment.

From this point onwards, the argument of Valanis can be very

much simplified without losing his final result. We shall present

this simpler argument here and avoid the questionable thermo-

dynamic argument given by him in [1].

We assume, with Valanis, that the state of the material at

any instant can be characterized by the instantaneous values of the

strain e and of v internal variables q(a)(a=l,...,v) , which

are symmetric second-order tensors. It is further assumed, still
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following Valanis, that the rate of change of q(a), measured

with respect to z , is determined by the instantaneous values

of E and of q(B)(3--,...,v) , thus

dq (COq( )(A 3
- os3

This is the evolution equation for q . (We will see later

that this assumption is unacceptable, but for the moment will

pretend that this is not the case.)

The function f~ must be an isotropic symmetric tensor

function of E and q(3), since the material is isotropic. We

shall suppose that it depends sufficiently smoothly on E and

q(E) and that these are sufficiently small, so that we can neglect

terms of higher degree than the first in them. We also make the

assumption that s = q(') = 0 when z = 0 We accordingly write

dq (  V 0V
~+ A q + (B tre + B tr q,) (A.4)

where the A's and B's are constants and 6 is the Kronecker

delta. From (A.4) we readily obtain

d(tr q(a)) V0d:: -(Aa +3B X)trc + (Aca+3B S)tr q(

(A.S)
oL A q(S)-Uz-Z a D + 3 Aa$q _ '

where the deviatoric strain and deviatoric internal variables are

given by
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}~ (() 6))1aD=a-(r) q( - -(tr q(I)~ (A.6)
ZD Z ' D =-

Equations (A.5)2 can be solved for qD )  to yield a

solution of the form

( ) V fz -p (z-z')
A c j e CD(z')dz' (A.7)

0

where the A's are constants determined by the equations

V

A (Act+p 5 0=I (a.,=l, ... ,v) (A.8)

A A

in which p (i=l,...,v) are the solutions for p of the

equation

detIp6aB + A S 0 , (A.9)

where 6 is the v-dimensional Kronecker delta.

In a similar manner equations (A.5), can be solved for

tr q(O) to yield

()- x 3
tr q = B J e tr(z')dz' , (A.i0)

0

where the B's are constants given by

B - (Aas 3BO 6 + ) 0

( l ,v) (A.11)

Ba A+ + 3Ba,

I " i|1ei i
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in which x ( =i..,') are the solutions for X of the

equation

det xNas + A + 3B = 0 (A.12)

In deriving (A.7) and (A.10), we make the assumption that

q = 0 when z = 0

With the assumption that £-(z) = 0 when z = 0 , we can

rewrite (A.7) and (A.10) as

3 D) e D(Z-Z)

z d(A.13)

, ) v _ f" z X] X (z-z') , t
tr a - tr(z) e d[tr(z ]

0

We now assume that the Cauchy stress a at "time" z is an

isotropic linear function of E(z) and q(a) (c=I,...,v) The

deviatoric stress CD is defined by

1
D= T (tra). (A.14)

Then, we may express cD and tra in the forms

D  G D + G qD ,A)

V (A.1)

tro = H(trs) + Z H3 (tr q())

where the G's and H's are constants. Using (A.13), we obtain

from (A.15), expressions for g D and trg of the forms
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f= <(z-z')d[tr]

0

where the functions ii(z-z') and K(Z-Z ) have the forms

V - P (z-z')11(z-z') = Po + a 11 e

(A.17)
v -X (z-z')

K(z-z') = K0 + I K ae

and PV K ( =,...,v) are constants.

It is evident that the passage from equations (A.13) and

(A.15) to the constitutive equations (A.16) is valid, whatever the

physical interpretation of z , provided that it is an isotropic

variable in terms of which the histories of the strain and of the

internal variables can be parametrized. The choice of z made

by Valanis is

=1

z = f( ) , f( ) Zn(l+Sc) , (A.18)

where 3 is a positive constant and ; is defined by (A.2).

If we accept a relation of the form (A.18)1 and use (A.3),

we obtain

dq ( a )

- = f( f)f(c) (,,q )) . (A.19)

This implies that the infinitesimal changes in the internal

variables due to an infinitesimal change in the strain depends not

only on the instantaneous values of the internal variables and the
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strain, but also, through ; , on the whole past history of the

strain. We remark that usually, when internal variables are intro-

duced, along with the current strain, as independent variables in

a constitutive equation, it is in order to provide a full des-

cription of the current state in terms of the current values of the

independent variables of the theory. If the internal variables and

the strain provide a complete description of the state, then the

infinitesimal change in the internal variables due to a specified

infinitesimal change in the strain should depend only on their

current values.

Another peculiarity of the relation (A.19) and, indeed, of

(A.3) is that different infinitesimal changes of strain which result,

from (A.2), in the same values of d; , lead to the same infini-

tesimal changes in the internal variables q(.) This peculiarity

can be avoided by including the "rate" of change of strain, dE/dz

as an independent variable in (A.3). Then, the relations (A.5)

are replaced by

dz = (A +3B)tre + (C +3D ) rZ
~z adLz

+ V (A, +3B a)tr q(0 (A.20)

dq~a d vD A D E CA D + A A a

where the A's, B's, C's and D's are constants.

From (A.16), proceeding as before, we again obtain expressions

for D and trj of the forms (A.16) where p(z-z') and K(z-z')
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still have the forms (A.17), and u and < =I...,) are

(different) constants. o, and & (3=1,...,) are still the

solutions of equations (A.9) and (A.12). We note, however, that

in obtaining (A.17) from (A.20) we must either assume that

f(a) in (A.3) depends linearly on d /dz , or that it is a

sufficiently smooth function of de/dz and that de/dz is

sufficiently small. The assumption that e and q(3) are small

does not, of course, guarantee that dE/dz is small. Indeed,

de/d: will not, in general, be small. For example, if the defor-

mation considered is a simple shear, then the shear component of

de/dz is (21c) , while the remaining components are Zero.

Even when modified by the inclusion of dz/dz as an

independent variable, the evolution equation (A.19) still implies

that infinitesimal changes in the internal variables resulting

from a specified infinitesimal change of strain is independent

of whether the strain is purely elastic or plastic. It is

difficult to see what physical identification of the internal

variables could lead to such a result.
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